11 research outputs found

    Interference modeling of wireless cooperative systems

    Get PDF
    The main goal of this thesis is to study the impact of interference on cooperative vehicular communications (VCs) with the aid of stochastic geometry tools. This thesis also proposes a framework to model interference in cooperative VCs. First, we study the effects of interference dependence on the received node for several transmission schemes, different channel models, and two mobility models. The performance in terms of outage probability is investigated. Second, we investigate the improvement of using non-orthogonal multiple access (NOMA) in the performance in terms of outage probability and average achievable rate for several transmission schemes. The results show that NOMA improves significantly the performance. We also investigate conditions in which NOMA outperforms OMA. Finally, studies are conducted: 1) an adaptive cooperative NOMA protocol is proposed, 2) an analysis of millimeter waves (mmWave) vehicular networks is carried out, 3) extension scenarios are investigated such as multiple relays, multiple hops, or multiples lanes

    Performance Evaluation of Adaptive Cooperative NOMA Protocol at Road Junctions

    Full text link
    Vehicular communications (VCs) protocols offer useful contributions in the context of accident prevention thanks to the transmission of alert messages. This is even truer at road intersections since these areas exhibit higher collision risks and accidents rate. On the other hand, non-orthogonal multiple access (NOMA) has been show to be a suitable candidate for five generation (5G) of wireless systems. In this paper, we propose and evaluate the performance of VCs protocol at road intersections, named adaptive cooperative NOMA (ACN) protocol. The transmission occurs between a source and two destinations. The transmission is subject to interference originated from vehicles located on the roads. The positions of the interfering vehicles follow a Poison point process (PPP). First, we calculate the outage probability related to ACN protocol, and closed form expressions are obtained. Then we compare it with other existing protocols in the literature. We show that ACN protocol offers a significant improvement over the existing protocols in terms of outage probability, especially at the intersection. We show that the performance of ACN protocol increases compared to other existing protocols for high data rates. The theoretical results are verified with Monte-Carlo simulations

    Technological Trends and Key Communication Enablers for eVTOLs

    Full text link
    The world is looking for a new exciting form of transportation that will cut our travel times considerably. In 2021, the time has come for flying cars to become the new transportation system of this century. Electric vertical take-off and landing (eVTOL) vehicles, which are a type of flying cars, are predicted to be used for passenger and package transportation in dense cities. In order to fly safely and reliably, wireless communications for eVTOLs must be developed with stringent eVTOL communication requirements. Indeed, their communication needs to be ultra-reliable, secure with ultra-high data rate and low latency to fulfill various tasks such as autonomous driving, sharing a massive amount of data in a short amount of time, and high-level communication security. In this paper, we propose major key communication enablers for eVTOLs ranging from the architecture, air-interface, networking, frequencies, security, and computing. To show the relevance and the impact of one of the key enablers, we carried out comparative simulations to show the superiority compared to the current technology. We compared the usage of an air-based communication infrastructure with a tower mast in a realistic scenario involving eVTOLs, delivery drones, pedestrians, and vehicles.Comment: 8 pages, 10 figure

    Harnessing the Potential of Optical Communications for the Metaverse

    Full text link
    The Metaverse is a digital world that offers an immersive virtual experience. However, the Metaverse applications are bandwidth-hungry and delay-sensitive that require ultrahigh data rates, ultra-low latency, and hyper-intensive computation. To cater for these requirements, optical communication arises as a key pillar in bringing this paradigm into reality. We highlight in this paper the potential of optical communications in the Metaverse. First, we set forth Metaverse requirements in terms of capacity and latency; then, we introduce ultra-high data rates requirements for various Metaverse experiences. Then, we put forward the potential of optical communications to achieve these data rate requirements in backbone, backhaul, fronthaul, and access segments. Both optical fiber and optical wireless communication (OWC) technologies, as well as their current and future expected data rates, are detailed. In addition, we propose a comprehensive set of configurations, connectivity, and equipment necessary for an immersive Metaverse experience. Finally, we identify a set of key enablers and research directions such as analog neuromorphic optical computing, optical intelligent reflective surfaces (IRS), hollow core fiber (HCF), and terahertz (THz)

    Modélisation des interférences dans un système coopératif sans fil

    No full text
    L’objectif principal de cette thèse est d’étudier l’impact des interférences dans les communications véhiculaires coopératives via des outils de la géométrie stochastique. Cette thèse propose un cadre formel d’étude d’interférences dans les communications véhiculaires coopératives. Dans un premier temps, nous étudions les effets de la dépendance des interférences sur les probabilités de coupure des transmissions, considérant plusieurs type de transmissions, différents modèles de canaux et deux modèles de mobilité. Dans un second temps, nous évaluons comment la probabilité de coupure et le débit moyen des communications véhiculaires peuvent être améliorés via l’utilisation de techniques d’accès non orthogonales (NOMA). Les résultats montrent que NOMA améliore fortement les performances. Nous établissons également les conditions mathématiques nécessaires pour que les techniques NOMA soient meilleures que les techniques orthogonales classiques (OMA) en termes de probabilité de coupure. Enfin, plusieurs autres études sont menées : 1) un protocole adaptatif et coopératif fondé sur la technique NOMA est proposé, 2) une analyse des réseaux véhiculaires à ondes millimétriques est conduite, 3) plusieurs autres extensions sont étudiées telles que plusieurs relais, plusieurs sauts ou plusieurs voies.The main goal of this thesis is to study the impact of interference on cooperative vehicular communications (VCs) with the aid of stochastic geometry tools. This thesis also proposes a framework to model interference in cooperative VCs. First, we study the effects of interference dependence on the received node for several transmission schemes, different channel models, and two mobility models. The performance in terms of outage probability is investigated. Second, we investigate the improvement of using non-orthogonal multiple access (NOMA) in the performance in terms of outage probability and average achievable rate for several transmission schemes. The results show that NOMA improves significantly the performance. We also investigate conditions in which NOMA outperforms OMA. Finally, studies are conducted: 1) an adaptive cooperative NOMA protocol is proposed, 2) an analysis of millimeter waves (mmWave) vehicular networks is carried out, 3) extension scenarios are investigated such as multiple relays, multiple hops, or multiples lanes
    corecore